Oroxyloside A Overcomes Bone Marrow Microenvironment-Mediated Chronic Myelogenous Leukemia Resistance to Imatinib via Suppressing Hedgehog Pathway
نویسندگان
چکیده
Imatinib (IM), as first inhibitor of the oncogenic tyrosine kinase BCR-ABL, has been widely used to treat chronic myeloid leukemia (CML) for decades in clinic. However, resistance to IM usually occurs in CML patients. The bone marrow (BM), as the predominant microenvironment of CML, secretes an abundant amount of cytokines, which may contribute to drug resistance. In current study, we utilized in vitro K562 co-culture model with BM stroma to investigate IM resistance. As a result, co-culturing of K562 with BM stroma was sufficient to cause resistance to IM, which was accompanied with the activation of hedgehog (Hh) signaling pathway and upregulation of BCR-ABL as well as its downstream proteins like phosphorylated Akt, Bcl-xL and survivin, etc. On the other hand, oroxyloside A (OAG), a metabolite of oroxylin A from the root of Scutellaria baicalensis Georgi, which had low toxic effect on K562 cells, was able to sensitize K562 cells co-cultured with BM stroma to IM treatment in vitro and in vivo. We observed that OAG suppressed Hh pathway and subsequently nuclear translocation of GLI1, followed by downregulation of BCR-ABL and its downstream effectors, thus facilitating IM to induce apoptosis of K562 cells. Together, BM microenvironment rendered K562 cells drug resistance through activating Hh signaling, however, OAG could overcome IM resistance of CML cells through inhibiting Hh-BCR-ABL axis in vitro and in vivo.
منابع مشابه
Pregnancy Outcome of Two Patients with Chronic Myelogenous Leukemia Treated with Imatinib
Although chronic myelogenous leukemia in pregnancy is rare, its management and treatment is more difficult and complicated.Treatment of patients with chronic myelogenous leukemia includes bone marrow transplantation, however in less than 30% of patients the donor’s organ would be accepted. To this end, cytotoxic therapy is considered as an alternative therapeutic option. This option provides sa...
متن کاملBM microenvironmental protection of CML cells from imatinib through Stat5/NF-κB signaling and reversal by Wogonin
Constitutive Stat5 activation enhanced cell survival and resistance to imatinib (IM) in chronic myelogenous leukemia (CML) cells. However, the mechanism of Stat5 activation in mediating resistance to IM in bone marrow (BM) microenvironment has not been evaluated precisely. In this study, we reported HS-5-derived conditioned medium (CM) significantly enhanced IM resistance in K562 and KU812. Int...
متن کاملStat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance.
Imatinib mesylate is a potent, molecularly targeted therapy against the oncogenic tyrosine kinase BCR-ABL. Although imatinib mesylate has considerable efficacy against chronic myeloid leukemia (CML), advanced-stage CML patients frequently become refractory to this agent. The bone marrow is the predominant microenvironment of CML and is a rich source of both soluble factors and extracellular mat...
متن کاملBCR-ABL-induced deregulation of the IL-33/ST2 pathway in CD34+ progenitors from chronic myeloid leukemia patients.
Although it is generally acknowledged that cytokines regulate normal hematopoiesis in an autocrine/paracrine fashion, their possible role in chronic myelogenous leukemia (CML) and resistance to imatinib mesylate treatment remain poorly investigated. Here, we report that CD34(+) progenitors from patients with CML at diagnosis are selectively targeted by the cytokine/alarmin interleukin (IL)-33. ...
متن کاملCXCR4 up-regulation by imatinib induces chronic myelogenous leukemia (CML) cell migration to bone marrow stroma and promotes survival of quiescent CML cells.
Chronic myelogenous leukemia (CML) is driven by constitutively activated Bcr-Abl tyrosine kinase, which causes the defective adhesion of CML cells to bone marrow stroma. The overexpression of p210Bcr-Abl was reported to down-regulate CXCR4 expression, and this is associated with the cell migration defects in CML. We proposed that tyrosine kinase inhibitors, imatinib or INNO-406, may restore CXC...
متن کامل